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ABSTRACT

The main objective of clustering methods is to segment the observations in subgroups or groupings, from measures of similarity
between them. One of the classic examples is K-means, that Euclidean distance is used between similarity measures. However,
there are some minor limitations, especially with regard to data that are not linearly separable. Kernel K-Means are as
alternative to solve this problem. The methods were implemented in the R, and, as a result, it was noticed that in addition to
solving well the issue of lack of linearity Kernel K-Means, is also a result of clustering when compared to classic K-Means.

Introduction
The goal of clustering is to segment and divide a dataset in sub-groups, using a from similarity measure, in order to group
similar observations to try to recognize patterns, or reveals insights from data. One of most classical clustering techniques
is the K-Means, a lot of results, research, and extensions involves this method along the lasts decades (1). This technique
operationalize this classification minimizing the within-groups distances (2). Despite the efficiency of this method, there are
some limitations to identify non-linear separable clusters. Analyzing this problem, some authors proposed some ways to deal
with the non-linearity problem (3); (4). One approach to deal with that situation it’s the Kernel K-Means, as an extension from
K-Means where the observations are taken to a higher dimensional space where they can be linearly separable. Although the
Kernel trick was used initially in the SVM context (5), he could be extended to others distance-based algorithms (6), which
includes the K-Means clustering technique. Ir order to evaluate the efficiency from the Kernel Trick to solve the non-linearity
problem in clustering, several types of kernels were evaluated, as well differents hyperparameters for each one.

K-Means
Considering a dataset X = (x1, ...,xn), where x are the observations from data, the main objective from k-means it’s to minimize

L = ∑
K
j=1 ∑xi∈C j ||xi−m j||2, (1)

where K is the numbers of clusters and

m j = ∑xi∈C j
xi
n j

(2)

is the the centroid that belongs j cluster from n j observations. Initially the centroids are randomly defined. Then, the euclidean
distance between each observation from each centroid is calculated, where the shortest distance between xi and m j associates
the observation to the j cluster. This process is repeated iteratively, updating the centroids form Equation 2., until the moment
where the convergence it secured.

Kernel K-Means
The kernel k-means can be defined as an extension from the k-means technique where, using the kernel trick, it’s possible to take
the observations and the centroids to higher dimensions where the distances can be calculated. Then , defining X = (x1, ...,xn)
as the observations, exists the clusters Ck where k = 1, ...,n, and centroids mk to each cluster Ck in dimension Rn, where
Φ : R→ Rn. Therefore, we can define, assuming that each cluster have at least one observation.

mk = ∑xi∈Ck
Φ(xi)
|Ck|

(3)

where |Ck| refers to the numbers of observations that belongs to Ck.



Algorithm 1: K-Means
Input: The matrix of observations X and the numbers of clusters K are parameters of kernel function, the convergence

criterion p
Output: The data matrix X and the class that refers to the clusters.

1 while ε ≥ p do
2 Calculate randomly K centroids m j;
3 Calculate the distances Di j between xi and each centroid;
4 Associate the shortest distance Di j to the cluster j ;
5 Recalculate the centroids using the Equation 2;
6 Calculate ε , as the distance between the new cluster the previous one.;
7 end
8 Return the matrix X with the observations and their respective clusters.

Then determining the squared distance as D(xi,mk) = ||φ(xi)−mk||2 we can rewrite it as

D(xi,mk) = φ(xi)
ᵀφ(xi)−2φ(xi)

ᵀmk +mᵀ
k mk (4)

substituting mk from equation (3) in (4)

D(xi,mk) = φ(xi)
ᵀφ(xi)−2

∑x j∈Ck
φ(xi)

ᵀφ(x j)

|Ck|
+

∑xl∈Ck ∑x j∈Ck
φ(x j)

ᵀφ(xl)

|Ck|2
(5)

to calculate the inner products we can use the kernel trick and obtain

D(xi,mk) = κ(xi,xi)−2
∑x j∈Ck

κ(xi,x j)

|Ck|
+

∑xl∈Ck ∑x j∈Ck
κ(x j ,xl)

|Ck|2
(6)

The Gram-Matrix (6), also called kernel matrix, is the matrix of dimension nxn that computes all the inner products between
φ(x) observations. The variable κ(xi,x j) corresponds to each element from this matrix. Then, isn’t necessary calculate every
κ(i, j) during the convergence process, and the distance is given by:

D(xi,mk) = K(xi,xi)−2
∑x j∈Ck

K(xi,x j)

|Ck|
+

∑xl∈Ck ∑x j∈Ck
K(x j ,xl)

|Ck|2
(7)

Therefore, after associate each observation from each one of k clusters, the information is updated in the dataset, in order to
repeat this process until it reaches the convergence, that is, there are no more changes on observation classification. The process
can be finished too if reach the maximum number of iterations. To secure the initialization of this algorithm it’s necessary to
randomly assign a group to each observation in the beginning of the process.

There are a lot of types of kernels that were developed along the decades, the most popular are the Gaussian Kernel, Linear,
and Sigmoidal that were implemented in the article, besides them, was also used the Exponential Kernel and Cauchy Kernel,
although they are not so common.

• Gaussian Kernel: the kernel gaussian is a type of radial basis kernel and it’s given by

κ(x,y) = e−
||x−y||2

2σ2 (8)

also can be rewrite as

κ(x,y) = e−γ||x−y||2 (9)

is interesting evaluet the choice of the hyperparameterσ that’s imporant to the clustering process, once that high values
can result in overfitting, whie lower values can reduce the kernel’s capacity to deal with non-linear situations.

• Polynomial Kernel: The polynomial kernel is given by

κ(x,y) = (xᵀy+ c)d (10)

where d is the degree of the polynomial. Higher degrees can deal better with the non-linearity but they can cause
overfitting and increase exponentially the computational cost.
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• Linear Kernel: Can be treat as a particular case of polynomial kernel where d = 1.

κ(x,y) = xᵀy+ c (11)

• Exponential Kernel: similar to Gauss Kernel, but isn’t used the square distance

κ(x,y) = e−
||x−y||
2σ2 (12)

• Cauchy Kernel: This kernel cam from Cauchy Distribution (7). It is a long tail kernel and can be used to provide
long-range influence and sensitivity over high-dimensional space.

κ(x,y) = 1

1+ ||x−y||2
σ

(13)

Algorithm 2: Kernel K-Means
Input: The observations X , numbers of clusters, and K, w maximum number of iterations.
Output: The data matrix X and their cluster classifications

1 Give random class to each observation xi;
2 Calculate the kernel matrix K for the determined kernel;
3 while The convergence isn’t obtained or isn’t reached the maximum number of iterations. do
4 Calculate the distances D(xi,mk) between xi and each centroid;
5 Associate the shortest distance D(xi,mk) to cluster k ;
6 Recalculate the distances D(xi,mk);
7 end
8 Return the matrix X and their respective clusters.

Methodology
The K-Means and Kernel K-Means clustering methods were applied to both synthetic (Figure 1) and real data sets. The artificial
are described in Table 1, while the real data provided by UCI Repository of Machine Learning (Murphy 1994) is described in
Table 2. The aforementioned methods were used and each was evaluated for accuracy. Mainly synthetic data covering the issue
of nonlinearity was used.

Table 1. Synthetic Data

Dataset No of observations No Clusters Dimension

Jain 373 2 2
Flame 240 2 2
PathBased 300 3 2
Circles 399 2 2

Table 2. Real Datasets

Dataset No of observations No Clusters Dimension

Iris 150 3 4
Seeds 199 3 7
Glass 300 6 9
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Figure 1. Synthetic Datasets. Respectively: (a) Circles, (b) Flame, (c) Jain, (d) PathBased

Results
All results were summarized in Table 3 which puts the accuracy measure for each of the methods for all databases used. It
can be seen that for some datasets, especially the artificial ones, the kernels showed some improvement. The Polynomial
Kernel used was degree 2, and the sigma parameter of the other methods was defined as sigma = 1. It can be seen that some
Kernels showed very low accuracy, and this may be caused by a wrong choice of sigma parameter for the case, so another
analysis regarding the choice of this value may be necessary. However, when the parameter fits well, as was the case with the
Exponential Kernel for the given circles, it is possible to clearly see the difference of the clustering result for a data that is not
linearly separable (Figure 2).

Table 3. Accuracy for each method for all databases

Banco de Dados K-Means RBF Poly. Lin. Exp. Cauchy

Jain 0,767 0,528 0,662 0,743 0,759 0,649
Flame 0,841 0,942 0,821 0,829 0,975 0,975
PathBased 0,743 0.853 0,797 0,773 0.970 0.953
Circles 0,531 0,917 1,000 0,579 1,000 0,912
Smiley 0,551 1,000 1,000 0,560 1,000 1,000
Cassini 0,854 1,000 0,928 0,928 1,000 1,000
Iris 0,920 0,893 0,853 0,887 0,940 0,900
Seeds 0,889 0,909 0,864 0,899 0,884 0,899
Glass 0,887 0,912 0,853 0,798 0,921 0,833

The others example over the synthetic datasets are shown in Figure 2
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Figure 2. Comparison of the classic K-Means and the Kernel K-Means that presented the highest accuracy for each database.
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Conclusion
When compared with the classic K-Means, the Kernel K-Means technique presented bests results, evidenced by greater values
in accuracy, and a better methodology to deal with non-linear classification problems. The study from parameter selection
was efficient and give a good framework to select the hyperparameters for each method. To future works it’s interesting the
possibility to ensemble the kernels to figure out if betters results can be achieved.
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